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Abstract
We generalize the construction of a class of type (1, 1) tensor fields R on a
tangent bundle which was introduced in a preceding paper. The generalization
comes from the fact that, apart from a given Lagrangian, the further data consist
of a type (1, 1) tensor J along the tangent bundle projection τ : TQ → Q, rather
than a tensor on Q. The main features under investigation are two kinds of
recursion properties of R, namely its potential invariance under the flow of the
given dynamics and the property of having vanishing Nijenhuis torsion. The
theory is applied, in particular, to the case of second-order dynamics coming
from a Finsler metric.

PACS numbers: 45.20Jj, 20.40Yy

1. Introduction

The term recursion operator is used in the literature in a number of different contexts, and
thus can have quite different meanings. This paper is concerned with a class of type (1, 1)

tensor fields on the tangent bundle of a differentiable manifold, which we describe as recursion
operators, and they relate more specifically to the study of second-order ordinary differential
equations. In that context, there are mainly two situations in which a type (1, 1) tensor field,
R say, is generally referred to as having recursion properties. One is the case where its
Nijenhuis torsion NR is zero, which will be the situation, for example, when the manifold
under consideration has a Poisson structure and R is the recursion tensor which is responsible
for the generation of a Poisson–Nijenhuis structure (see [15]). Poisson–Nijenhuis structures
play a prominent role in the study of bi-Hamiltonian systems, for the characterization of such
aspects as integrability or separability (see, e.g., [13, 17]). The other situation of interest
is the case where R is invariant under the flow of some given dynamics �, i.e. L�R = 0,
in which case R obviously has the property of mapping symmetries of � into symmetries.
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Such invariant tensors can further be useful for the generation of first integrals or even for
the characterization of decoupling of second-order equations (see section 4 for more details
about such applications). The two recursion type features, namely NR = 0 and invariance of
R under some flow, will often occur simultaneously in applications, but we will treat them to
some extent separately in this paper.

A source for many of the ideas to be discussed below is [8], in which the two possible
properties of a recursion operator were both found to be relevant in the context of the dynamics
of kinetic energy Hamiltonians on the cotangent bundle of a (pseudo-)Riemannian manifold.
More precisely, Crampin et al [8] was about (gauged) bi-differential calculi and the natural
role they play in the study of bi-Hamiltonian structures. For specific applications, R was taken
to be J̃ , the complete lift to the cotangent bundle T ∗Q of a type (1, 1) tensor field J on Q. The
two cases of special interest were the case in which J̃ is invariant under the flow of a kinetic
energy Hamiltonian system and the case in which J is a so-called special conformal Killing
tensor or Benenti tensor with respect to a given metric tensor on Q, which plays an important
role in the study of Hamiltonian systems of mechanical type which are separable in the sense
of Hamilton–Jacobi theory. In both cases the Nijenhuis property NR = 0 came for free.

The matters discussed in [8] are of course limited in that they deal only with systems
which are, as one might say, quadratic in velocities. There are many situations in which one
would like to be able to use similar techniques, but which are not subject to that limitation:
for example, separable systems in which there are first integrals quartic (say) in velocities;
or systems in which the quadratic restriction is replaced by that of being homogeneous of
degree two, that is, Finsler structures. The work described in the present paper is part of a
programme whose overall objective is adapting [8] to cover more general dynamical systems,
which might include such examples. This is far from being trivial, however, the Nijenhuis
property NR = 0 will no longer readily come for free, for example. We shall therefore limit
ourselves here, so far as [8] is concerned, to studying tensor fields R which are invariant under
the given dynamics, leaving the generalization of the situation which in [8] led to so-called
special conformal Killing tensors to a later contribution.

In [22], the first instalment of this programme, we reviewed [8] from a certain kind of
tangent bundle perspective, with the purpose of setting the stage for the type of generalization
we have in mind. Briefly, if S denotes the canonical almost tangent structure on TQ and J c

the complete lift of J to TQ, it was observed that J cS provides a kind of alternative almost
tangent structure. Thus for any given regular Lagrangian L on TQ it makes sense to consider,
in addition to the corresponding symplectic form ddSL, the 2-form ddJcSL; these two forms
give rise in a natural way to a type (1, 1) tensor field R on TQ, defined by

iR(ξ)ddSL = iξ ddJ cSL, ∀ξ ∈ X (TQ) (1)

(we denote the module of vector fields on a manifold M by X (M)). That this tensor on TQ
has an important role to play is suggested by the fact that it is the pullback under the Legendre
transform of L of the lift J̃ of J to T ∗Q. The special case in which L is the kinetic energy
of a Riemannian metric, or more generally a Lagrangian of mechanical type, then leads to
a tangent bundle version of the results in [8], which contains a number of interesting new
features.

With a generalization to Finsler spaces, for example, in mind it will obviously not be
sufficient simply to replace a Riemannian metric by a Finsler one, say, while keeping J to be a
basic tensor field, i.e. a tensor field on Q: it will be necessary to take J to be velocity dependent
also, that is, to take it to be a tensor field along the tangent bundle projection. So the main
objective of this paper is to generalize the constructions in [22] to the case where J is a tensor
field along the tangent bundle projection. When we consider the special case of a Lagrangian
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coming from a Finsler metric, it will be natural to assume that J is homogeneous of degree
zero in the velocities; but we shall not make such an assumption initially. In particular, we
shall be concerned with generalizing the definition of R in (1) when J is a tensor field along
the tangent bundle projection. For want of a better term we shall call a tensor R defined as in
(1) or its generalization an R-tensor.

It is a major component of our approach that we concentrate, certainly so far as intrinsic
definitions and coordinate-free calculations are concerned, on the tangent bundle rather than
the cotangent bundle. One of the main reasons for this is that the calculus of forms along the
tangent bundle projection has been fully developed (and proven to be successful in a number of
applications), which is much less the case for a calculus along the cotangent bundle projection.
But we have seen in [22] that coordinate calculations tend to be easier on the cotangent bundle
side, so we shall try to use the best of both worlds in what follows.

The scheme of the rest of the paper is as follows. In the following section we give a
short review of some necessary background information about the calculus we use. The first
question to address in the paper proper is whether there is a natural generalization of the
construction (1) when J is a tensor along the tangent bundle projection. We show how to do
this in section 3 and investigate the structure and immediate properties of the resulting tensor
R. Section 4 is about the conditions for such R to be invariant under the flow of � and recalls a
number of applications in which such recursion tensors play a distinctive role. The conditions
for R to have vanishing Nijenhuis torsion are studied in section 5. The theory is applied to the
particular case of a Finsler Lagrangian in section 6, and is illustrated on some simple systems
in section 7.

We feel that it is worthwhile to end this introduction by explaining briefly what this paper
is not about. Mainly, one should distinguish methods specifically developed for the study of
ordinary differential equations from those which apply more generally to partial differential
equations, even though the general purpose of the methods may be similar. Recursion
operators have extensively been studied also for partial differential equations, specifically
in the context of equations with infinitely many conservation laws such as the KdV equation;
for general references about this subject see, for example, the books by Olver [21] and Bluman
and Kumei [1], or that by Bocharov et al [2]. Generally speaking, such an operator maps
‘generalized symmetries’, also called Lie–Bäcklund symmetries, into new such symmetries,
possibly depending on higher-order derivatives. In this context, therefore, a recursion operator
will generally be a differential operator of nonzero order; this is in contrast to the case we
discuss, in which recursion operators are tensors, that is, differential operators of order zero.
But it is shown, for example, in [21] that in the case of ordinary differential equations, or in other
words vector fields, one can without loss of generality restrict one’s attention to symmetries
which are vector fields in the ordinary sense. By a similar argument one can show that for
the second-order equations governed by some vector field � on TQ, the relevant symmetries
are simply the vector fields living on the same manifold whose flows leave � invariant, since
dependence on derivatives of second and higher order can always be eliminated through the
given differential equations. There is therefore no point in considering recursion operators
which are of nonzero order as differential operators.

2. Preliminaries

In this section we briefly recall the basics of what one might call SODE-calculus. SODE is an
abbreviation for second-order ordinary differential equation. We shall be dealing with systems
of second-order ordinary differential equations which can be represented by vector fields �
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on TQ given in terms of base coordinates qi and corresponding fibre coordinates (velocities)
ui by

� = ui ∂

∂qi
+ f i ∂

∂ui

for some functions f i = f i(qj , uj ).
Each SODE defines on TQ a horizontal distribution, or nonlinear Ehresmann connection,

with connection coefficients �i
j = − 1

2∂f i/∂uj . We shall denote by X (τ ) the C∞(TQ)-module
of vector fields along the tangent bundle projection τ : TQ → Q, that is, sections of the
pullback bundle τ ∗TQ → TQ. Each X ∈ X (τ ) determines two vector fields on TQ, its
horizontal lift XH where

XH = Xi

(
∂

∂qi
− �

j

i

∂

∂uj

)
= XiHi,

and its vertical lift XV given by

XV = Xi ∂

∂ui
= XiVi.

We can also define horizontal and vertical lifts of a type (1, 1) tensor field J along τ by

JH (XV ) = J (X)V , JH (XH ) = J (X)H , (2)

JV (XV ) = 0, J V (XH ) = J (X)V . (3)

The curvature R of the nonlinear connection is the vector valued 2-form along τ given by

R = 1

2
Ri

jkdqj ∧ dqk ⊗ ∂

∂qi
, Ri

jk := Hk

(
�i

j

) − Hj

(
�i

k

)
. (4)

Corresponding to the nonlinear connection there is a linearized connection, said to be of
Berwald type, which can best be interpreted (see, e.g., [4]) as a connection on τ ∗TQ → TQ.
The main operators associated with this linear connection are a vertical and horizontal covariant
derivative, acting on tensor fields along τ , which are determined, for each X ∈ X (τ ), by
DH

X F = XH(F), DV
XF = XV (F ) for their action on functions F ∈ C∞(TQ), by

DH
X

∂

∂qi
= Xj�k

ji

∂

∂qk
, DV

X

∂

∂qi
= 0, where �k

ji = ∂�k
j

∂ui

for the action onX (τ ), and by duality rules for the action on 1-forms along τ . For a full account
of the resulting calculus, one can consult [18, 19]. For our present needs, however, a number
of key relations will generally be sufficient, as was the case, for example, in the application
[20] and in [22]. Most frequently used are bracket relations for vertical and horizontal lifts of
vector fields along τ , which read

[XV , YV ] = (
DV

XY − DV
Y X

)V
, (5)

[XH, YV ] = (
DH

X Y
)V − (

DV
Y X

)H
, (6)

[XH, YH ] = (
DH

X Y − DH
Y X

)H
+ R(X, Y )V . (7)

It will be convenient to set

DV
XY − DV

Y X = [X, Y ]V , DH
X Y − DH

Y X = [X, Y ]H .



A class of recursion operators on a tangent bundle 7323

It is further worthwhile to observe that one can introduce a kind of classical tensor calculus
notation for the horizontal covariant derivative: taking as example a 2-covariant tensor K along
τ , with components Kij , we can put

Kij |l := (
DH

∂/∂ql K
)
ij

= Hl(Kij ) − Kis�
s
lj − Ksj�

s
li .

We shall occasionally use such a notation.
There is a canonical vector field along τ , the total derivative T = ui∂/∂qi . Its importance

is clear from the fact that TV is the Liouville vector field on TQ, so that homogeneity properties
in the fibre coordinates will be characterized intrinsically by the DV

T operator. Furthermore,
TH is the horizontal part of the SODE � (and will coincide with it in the case of a spray). Thus
the following bracket relations, important for calculating Lie derivatives with respect to �, are
in a way particular cases of the preceding ones:

[�,XV ] = −XH + (∇X)V , [�,XH ] = (∇X)H + �(X)V . (8)

Here �, a type (1, 1) tensor along τ , is called the Jacobi endomorphism and completely
determines the curvature (it is equal to iTR in the case of a spray), and ∇ is the dynamical
covariant derivative, which on functions acts like � and further satisfies ∇(∂/∂qi) = �

j

i ∂/∂qj .
One can also introduce vertical and horizontal exterior derivations on scalar- and

vector-valued forms. Essentially, they are determined by the following action on functions
F ∈ C∞(TQ) and (scalar- or vector-valued) 1-forms such as J :

dVF (X) := DV
XF, dVJ (X, Y ) := DV

XJ (Y ) − DV
Y J (X), (9)

with again similar defining relations for dH. More results related to the calculus along τ will
be recalled when needed.

We also take the opportunity here to recall a few general facts about Lagrangian systems.
The Poincaré–Cartan 2-form ωL = ddSL of a Lagrangian L on TQ is entirely determined by a
metric tensor field g along τ , where g = DV DV L is the Hessian of L. Then ωL is the so-called
Kähler lift gK of g; ωL vanishes on two vertical or two horizontal vector fields, while

ωL(XV , YH ) = g(X, Y ). (10)

For later use, here are the specific properties of g (cf [19]), known as the Helmholtz conditions,
which are (apart from g being symmetric and non-singular) the necessary and sufficient
conditions for gij to be a multiplier matrix which turns the second-order equations q̈j = f j

determined by a given � into the Euler–Lagrange equations of some Lagrangian:

∇g = 0, DV
Xg(Y,Z) = DV

Zg(Y,X), g(�X, Y ) = g(X,�Y). (11)

In view of the commutator property
[∇, DV

X

] = DV
∇X − DH

X , they further imply that also

DH
X g(Y,Z) = DH

Z g(Y,X). (12)

The Poincaré–Cartan 1-form θL = dSL by the way, being a semi-basic form, can be
viewed as a 1-form along τ as well and can then be written as θL = dVL, so that θL(XV ) = 0
and θL(XH) = DV

XL.

3. R-tensors

In this section we shall propose a generalization of equation (1) to the case in which J is a
general type (1, 1) tensor field along τ . The main point to observe is that J cS is in fact JV ,
the vertical lift of J to TQ, and that the vertical lift construction extends from tensor fields
on Q to tensor fields along τ . Obviously (J V )2 = 0, and the image of JV coincides with its
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kernel provided J is non-singular. So JV is still an almost tangent structure, but it need not be
integrable when J is not basic, which is to say that its Nijenhuis torsion NJV need not vanish.

There are other interesting properties of J cS which we lose in the more general situation.
For completeness, we here list the obstructions to having such properties:

• NJV = 0 if and only if DV
JXJ (Y ) − DV

JY J (X) = 0;
• the derivations dS and dJV commute, or in other words the Nijenhuis bracket [JV , S]

vanishes, if and only if dVJ = 0;
• dS and dJV constitute a bi-differential calculus, meaning that dS

2 = 0, dJV
2 = 0 and

[dS, dJV ] = 0, if and only if N V
J = 0 and dVJ = 0.

The proof of such properties is a matter of straightforward calculations and is omitted, but we
should specify that N V

J is a Nijenhuis-type tensor field along τ , defined by

N V
J (X, Y ) = NV

J (X, Y ) − NV
J (Y,X), where NV

J (X, Y ) = DV
JXJ (Y ) − (

JDV
XJ

)
(Y ). (13)

NH
J and NH

J are defined in a similar way (see [20]).
Let us come now to the consideration of R-tensors in this context. Take � to be a (regular)

Lagrangian system, so that we have a symplectic form ωL = ddSL at our disposal, let J be a
type (1, 1) tensor along τ , and consider the type (1, 1) tensor R on TQ defined by

iR(ξ)ddSL = iξ ddJV L, ∀ξ ∈ X (TQ). (14)

In view of what precedes, it is clear that we cannot expect this generalized R-tensor to have
all the properties we discussed in [22] for a basic J .

We first set out to characterize R through its action on horizontal and vertical lifts. We
pointed out in the introduction that the Poincaré–Cartan 1-form θL = dSL can be written as
θL = dVL. Similarly, we have that dJV L = JV (dL) = JH θL is semi-basic, so that the same
1-form, regarded as a form along τ , can equally be written as JθL.

Lemma 1. The closed 2-form ω1 = ddJV L is characterized by ω1(X
V , Y V ) = 0, and

ω1(X
V , YH ) = DV

X(J θL)(Y ), ω1(X
H , YH ) = dH(J θL)(X, Y ).

Proof. We have

ω1(X
H , YH ) = LXH (θL((JY )H )) − LYH (θL((JX)H )) − θL(JH ([XH, YH ]))

= DH
X (J θL(Y )) − DH

Y (J θL(X)) − θL

(
J
(
DH

X Y − DH
Y X

))
= DH

X (J θL)(Y ) − DH
Y (J θL)(X) = dH(J θL)(X, Y ).

A similar calculation gives the desired result for ω1(X
V , YH ). �

Using the generalized metric tensor g, we define the transpose of an arbitrary (1, 1) tensor
K along τ as follows.

Definition 1. The transpose K of K with respect to g is determined by g(KX, Y ) = g(X,KY),
for all X, Y ∈ X (τ ).

Proposition 1. For a given type (1, 1) tensor field J along τ , let K and U be defined by

g(KX, Y ) = DV
Y (J θL)(X), (15)

g(UX, Y ) = dH(J θL)(X, Y ). (16)

Then the type (1, 1) tensor field R on TQ defined by (14) is characterized by
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R(XV ) = (KX)
V
, (17)

R(XH ) = (KX)H + (UX)V . (18)

Proof. Observe that ωL(R(XV ), Y V ) = 0, while in view of the definition of K,U and K , and
the defining relation (14), and using the results of the above lemma, we can write

ωL(R(XV ), YH ) = g(KX, Y ),

ωL(R(XH ), Y V ) = −g(KX, Y ),

ωL(R(XH ), YH ) = g(UX, Y ).

The result now follows from the characterizing properties of ωL such as (10). �

Note that it follows from the skew-symmetry of the right-hand side in (16) that U = −U .
We will need properties of covariant derivatives of K and U. These will follow directly

from their defining relations by making use of the following general commutator relations
(see, e.g., [19]), which can be seen as defining curvature components of the Berwald-type
connection on the pullback bundle τ ∗TQ → TQ (see, e.g., [4]). For arbitrary X, Y ∈ X (τ ),[

DV
X, DV

Y

] = DV
[X,Y ]V

, (19)[
DV

X, DH
Y

] = DH

DV
XY

− DV

DH
Y X

+ µB(X,Y ), (20)[
DH

X , DH
Y

] = DH
[X,Y ]H

+ DV
R(X,Y ) + µRie(X,Y ). (21)

Here B and Rie are type (1, 3) tensor fields along τ or, as they appear here, covariant
2-tensors taking values in the module of (1, 1)-tensors. For a general (1, 1) tensor T ,µT

is a derivation of the tensor algebra along τ of degree zero, whose action on functions is zero,
while µT (Z) = T Z on vector fields Z and µT (α) = −T α on 1-forms α. To specify now the
curvature tensors under consideration, we have for the so-called mixed curvature tensor B that
B(X, Y )Z is symmetric in all three arguments and has components Bi

jkl = �i
jkl = VkVl

(
�i

j

)
;

the tensor Rie on the other hand (which is the Riemann curvature tensor in Riemannian
geometry) is defined in general by

Rie(X, Y )Z = −DV
ZR(X, Y ). (22)

Proposition 2. We have, for arbitrary X, Y,Z ∈ X (τ ),

g
(
DV

ZK(X), Y
) − g

(
DV

Y K(X),Z
) = 0, (23)

DV
Zg(UX, Y ) + g

(
DV

ZU(X), Y
) = DH

Z g(KY,X) − DH
Z g(KX, Y ) + g(dHK(X, Y ), Z), (24)∑

X,Y,Z

(
DH

X g(UY,Z) + g
(
DH

X U(Y ), Z
)) =

∑
X,Y,Z

g(KZ,R(X, Y )), (25)

where
∑

X,Y,Z refers to a cyclic sum over the indicated arguments. Furthermore,

K = K ⇔ dV(J θL) = 0. (26)

Proof. The first property follows immediately from taking a vertical derivative of the defining
relation (15) and making use of the ‘vertical Helmholtz property’ in (11) and the commutator
identity (19). For the next two properties, the computations start similarly from the defining
relation (16) of U. Taking a DV derivative, one has to use the commutator relation (20) on
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the right-hand side: the terms involving the tensor B cancel out in view of its full symmetry
and (24) readily follows. For the DH derivative of (16), the computation is somewhat more
involved: one has to apply the commutator (21) a second time after exploiting the skew-
symmetry of U, in such a way that a cyclic sum combination appears. On doing so the terms
involving Rie cancel out in view of the Bianchi identity

∑
Rie(X, Y )Z = 0 and (25) follows.

Finally, the characterization of symmetry of K follows directly from the defining relation. �

There are a couple of further consequences which are worth mentioning: one tells us what
the obstruction is for K to be symmetric with respect to DH

X g; the other shows under what
circumstances a property like (23) also holds for the horizontal derivatives of K; the proof is
left to the reader.

Corollary 1. For all X, Y,Z ∈ X (τ ), we have

DH
X g(KY,Z) − DH

X g(KZ, Y ) = g
(
DV

ZU(X), Y
) − g

(
DV

Y U(X),Z
)

+ g(dHK(X,Z), Y ) − g(dHK(X, Y ), Z), (27)

g
(
DH

Z K(X), Y
) − g

(
DH

Y K(X),Z
) = g

(
DV

Z∇K(X), Y
) − g

(
DV

Y ∇K(X),Z
)
. (28)

In coordinates, using the local basis {Hi, Vi} of vector fields and its dual
{
dqi, ηi =

dui + �i
kdqk

}
, we have

R = Ki
jHi ⊗ dqj + K

i

jVi ⊗ ηj + Ui
jVi ⊗ dqj , (29)

where, denoting Vi(L) for shorthand by pi ,

Ki
j = gikVk

(
J l

jpl

)
, (30)

Ui
j = gik

[
Hj

(
J l

kpl

) − Hk

(
J l

jpl

)]
. (31)

It is evident that K and U do not determine J uniquely, or in other words that different J s may
give the same R. We shall have an occasion to take advantage of this freedom in the choice of
J later in the paper.

One could choose to use the momenta pj as coordinates on TQ rather than the velocities
ui . Then gikVk = ∂/∂pi , and the expression for K becomes

Ki
j = ∂

∂pi

(
J l

jpl

)
. (32)

It is apparent from this equation that Ki
j = J i

j when J i
j is independent of the fibre coordinates.

Symmetry properties with respect to g of course refer to the type (0, 2) rather than the type
(1, 1) representation of the tensor under consideration; that is to say, if we put Kij = gilK

l
j ,

then

Kij = ∂

∂ui

(
J l

jpl

)
, (33)

and condition (26) for symmetry of K is self-evident. Equally evident then is the property

∂Kij

∂ul
= ∂Klj

∂ui
, (34)

which is a coordinate form of (23).
The role of J l

jpl in the full expression for R has by now become prominent, and
this suggests that we should seek to generalize also the notion of complete lift to the
cotangent bundle T ∗Q of a type (1, 1) tensor field J along the cotangent bundle projection
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π : T ∗Q → Q. Such a J can act on semi-basic 1-forms on T ∗Q, regarded as 1-forms along
π , and the canonical 1-form θ = pidqi is one of those: then Jθ = J l

jpldqj .

Definition 2. Let J be a type (1, 1) tensor field along π : T ∗Q → Q, then the complete lift
J̃ is the (1, 1) tensor on T ∗Q defined by

iJ̃ (ξ)dθ = iξ d(J θ), ∀ξ ∈ X (T ∗Q). (35)

Remark. Just as with the standard lifting procedures from Q to T ∗Q, one can also define the
vertical lift of a J along π , as being the vector field

J v = J i
j pi

∂

∂pj

∈ X (T ∗Q). (36)

The right-hand side in the defining relation (35) can then be written also as iξLJ v dθ = iξ diJ v dθ

(cf the definition of complete lift in [6]).
Starting from a J along τ , its image under the Legendre transform associated with L is a

tensor field along π which in coordinates looks identical to the expression on TQ referred to
above. We shall therefore denote this tensor also by J (rather than Leg∗J ).

Proposition 3. Let Leg : TQ → T ∗Q denote the Legendre transform defined by the given
regular Lagrangian L, then Leg∗R = J̃ .

Proof. As observed before, the 2-form ω1 on the right-hand side of (14), if we identify
semi-basic forms with forms along τ , can be written with a slight abuse of notation as d(J θL),
and it is clear then that its image under Leg∗ is just d(J θ). The statement now immediately
follows. �

From the coordinate expression (29) of R and the comment (32) about K, one can in fact
immediately surmise that J̃ must have the form

J̃ = ∂

∂pi

(
J l

jpl

) (
Xi ⊗ dqj +

∂

∂pj

⊗ πi

)
+

(
Xk

(
J l

jpl

) − Xj

(
J l

kpl

)) ∂

∂pj

⊗ dqk, (37)

where Xk = Leg∗Hk and Leg∗η
j = gjkπk . For completeness, one can verify that

Xk = ∂

∂qk
− �̃lk

∂

∂pl

, with �̃lk = glj

(
�

j

k +
∂2H

∂pj∂qk

)
,

where H is the Hamiltonian corresponding to L. Correspondingly, πk = dpk + �̃kldql . It is
worthwhile to observe that �̃lk = �̃kl . In fact, one can easily compute from the definition of
the connection coefficients �i

j that a tangent bundle expression for the �̃lk can be written as

�̃lk = 1

2

(
�(glk) − ∂2L

∂uk∂ql
− ∂2L

∂ul∂qk

)
,

which is manifestly symmetric.
Before embarking on the two aspects of recursion now, let us state for later use two more

properties of R with respect to the tangent bundle structure on TQ (as encoded by the tensor S).
These are easy to verify by the usual technique of acting on vertical and horizontal lifts.

Proposition 4. (i) RS = SR if and only if K = K . (ii) [R, S] is a vertical-vector-valued
2-form if and only if dVK = 0.
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4. Invariant R-tensors

We now turn to the issue of R being a recursion tensor in the sense of being a symmetry
generator for �, i.e. we investigate the properties of R-tensors which have vanishing Lie-
derivative with respect to �.

Theorem 1. Let R be a type (1, 1) tensor on TQ defined by tensor fields K and U along τ

as in equations (15), (16). Then L�R = 0 if and only if K is symmetric with respect to g,
U = 0,K has vanishing dynamical covariant derivative ∇K and commutes with the Jacobi
endomorphism �.

Proof. Using the characterization (17), (18) of R and the bracket relations (8), it is
straightforward to verify that

L�R(XV ) = (K − K)(X)
H

+ (∇K + U)(X)
V
, (38)

L�R(XH ) = (∇K − U)(X)H + (�K − K� + ∇U)(X)
V
. (39)

Expressing that the horizontal and vertical parts must vanish separately, the result now
immediately follows. �

Note that the only change here with respect to the result for basic J in [22] is that J

is replaced by K. Note also that since U must be zero, invariant R-tensors are of the form
R = KH , where K satisfies the conditions of the theorem.

It is known (see [10]) that an invariant type (1, 1) tensor field R on TQ, which is symmetric
with respect to ωL and commutes with S, will give rise to a different Lagrangian L′ for the
same �, provided that the 2-form iRωL is closed. Such a L′ is commonly called an ‘alternative
Lagrangian’ in the literature (it is not simply the original L plus a total time-derivative). We
shall see that the theory developed in [10] fits entirely within our present framework. To begin
with, we prove an economical version of the way alternative Lagrangians arise in the context
of R-tensors.

Proposition 5. For a given regular Lagrangian L and given type (1, 1) tensor J along τ ,
consider the tensor K defined by (15). Assume K is symmetric, commutes with � and satisfies
∇K = 0, and put g′ = K g. Then g′ satisfies the Helmholtz conditions (11) and hence,
provided that K is non-singular, defines an alternative Lagrangian for �.

Proof. Symmetry of K means the same as saying that g′ is symmetric, while the commutativity
of K and � then implies that also � g′ is symmetric. ∇g′ = 0 trivially follows from ∇g = 0
and ∇K = 0. The vertical Helmholtz property of g, together with (23), finally implies that g′

will have the same property. �

Comparing the above statement with theorem 1, it is not immediately obvious why nothing
is said about U. Let us explain this point more clearly as follows. Starting from a tensor J

along τ , the corresponding R with components K and U is uniquely determined. If K satisfies
the above requirements, we have an alternative Lagrangian L′, even though the R we started
from need not be invariant since U need not be zero. The point is, however, that there is a
different tensor then, related to the same K, which is invariant, namely R′ = KH . It is the
tensor obtained by replacing ω1 we first thought of in definition (14) by ωL′ .

It is worth explaining that R′ is also an R-tensor in more detail by the following two
arguments: (i) with K as the starting point, we discuss what is needed to have that K is derived
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from a J in such a way that the corresponding U is zero; (ii) we show how an alternative L′

gives rise to such a K.
Suppose that the tensor K is symmetric with respect to g and satisfies (23). The latter

means (see, e.g., (34)) that the covariant form of K comes from some 1-form β, in the sense
that K = DV β. The symmetry of K further implies that β = DV F for some function F, so
that K is a Hessian. Having fixed a β, we can clearly find a tensor J , indeed many tensors
J , such that J s

i ps = βi , but the corresponding U does not depend on the freedom in J . The
1-form β itself is determined in the first stage to within an arbitrary 1-form β0 on the base
manifold Q. Assume next that ∇K = 0. Then property (28) says that Kij |l = Klj |i , where
Kij = Vi(βj ) = Vj (βi), or explicitly

Hl(Vj (βi)) − �s
ljVs(βi) = Hi(Vj (βl)) − �s

ijVs(βl).

Interchanging the horizontal and vertical derivatives, it follows that Vj (Hl(βi)−Hi(βl)) = 0.
Hence Hl(βi)−Hi(βl) are the components of a basic 2-form and thus the freedom of selecting
a basic β0 can be used to cancel them by dHβ0 = dβ0, which means that the corresponding
U then is zero in view of (31). In conclusion, starting from a tensor K, property (23) ensures
that K comes from some J , and if K is symmetric and ∇-parallel, it can always be arranged
that the corresponding U is zero. Concerning point (ii) now, if g′ is the metric tensor along τ

determined by the alternative Lagrangian L′ (assumed regular), and we define K by g′ = K g,
then K is symmetric and satisfies (23) and ∇K = 0, as a result of the Helmholtz conditions
satisfied by both g and g′. Hence, it comes from a J with U = 0 and KH is an R-tensor.

Concerning the other recursion aspect now, the computation of NR in all generality, i.e.
without linking it to invariance properties of R, is quite tedious and will be addressed in the
next section. But for the subclass of horizontal lifts of an arbitrary (1, 1) tensor K along τ ,
which is the situation we encounter here, things are a lot simpler, so we may discuss them
already now. Indeed, as was mentioned in [20], we have

NKH (XV , Y V ) = N V
K (X, Y )

V
, (40)

NKH (XH , Y V ) = NH
K (X, Y )

V − NV
K (Y,X)

H
, (41)

NKH (XH , YH ) = NH
K (X, Y )

H
+ RK(X, Y )V , (42)

where the Nijenhuis type tensors along τ were introduced in the previous section and the term
related to the curvature R is defined by

RK(X, Y ) = R(KX,KY) − K(R(KX, Y ) + R(X,KY)) + K2(R(X, Y )).

So vanishing of NKH reduces to three conditions (not five as one might expect), namely

NV
K = 0, NH

K = 0, RK = 0.

If KH is actually the invariant tensor R of theorem 1, there is a further reduction.

Proposition 6. Under the conditions of theorem 1, we have NR = 0 if and only if NV
K = 0.

Proof. It was shown in [20] that, in all generality, ∇NV
K = NV

K,∇K − NH
K . We do not need

the precise meaning of NV
K,∇K right now, because we know that ∇K = 0 in this situation,

and it follows that NV
K,∇K = 0. Thus NV

K = 0 will imply NH
K = 0. Also derived in [20]

is an identity which expresses RK as a sum of terms, each of which involves either NV
K or

�K − K�. Hence, under the present assumptions, RK will automatically be zero as well.
�
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There is an interesting application of such tensors to the characterization of separable
Lagrangian equations. The type (1, 1) tensors under consideration in [7, 9, 10], for example,
must be algebraically diagonalizable and have eigenvalues with even degeneracy (constant
degeneracy is understood as being part of the meaning of diagonalizability here). The latter
is obvious for our tensors R, since they are of the form KH , so that single eigenvalues of K
are double eigenvalues of R. Separability of the given Lagrangian system means that there
exists a coordinate transformation on Q such that the system decouples into a number of
lower dimensional subsystems in those coordinates. A key role in the discussion of results on
separability for second-order differential equations is played by the eigenspaces of the Jacobi
endomorphism � (see [20]). For the present context, we can state the following result.

Proposition 7. Suppose that L�R = 0 and that K further has the properties NV
K = 0 and

dVK = 0. Then, if K is diagonalizable, the given system � is separable.

Proof. We know that R is invariant, has vanishing Nijenhuis torsion and has doubly degenerate
eigenvalues. Moreover, since K is symmetric R commutes with S and since dVK = 0 the
Nijenhuis bracket of R and S takes vertical values (see proposition 4). These are exactly
the conditions which are required for the theorem about separability in [9], or better, for the
slightly corrected version of this theorem as given in [20]. �

Let us further briefly review the more commonly known application of invariant tensors
to the generation of first integrals. In that field, a bi-differential calculus can play a relevant
role, and it is worth trying to understand in detail what the distinctive role in this application
is of invariance of R on the one hand and zero torsion on the other.

The equation L�R = 0, or essentially ∇K = 0, is a Lax-type equation. It follows that
the trace of R (and of all its powers) is a first integral of �. In the context of alternative
Lagrangians, this geometric set-up explains what is often referred to as the Hojman–Harleston
theorem [12]. For a somewhat more general geometric approach to Lax equations, see [3].
The Nijenhuis condition is not required for having first integrals, but it enters the scene when
one wishes such integrals to be in involution, i.e. when the issue of complete integrability is at
stake. In fact, it was shown in [7], still in the context of alternative Lagrangians but translated
to our present set-up, that if NR = 0 and K has distinct eigenfunctions at each point then these
eigenfunctions are in involution. A related issue is the bi-Hamiltonian description, which
arises from a Poisson–Nijenhuis structure. There is a somewhat hidden assumption here.
Indeed, in order to have a second Poisson structure, originating from the symplectic form ωL

and the tensor R, the so-called Magri–Moroso concomitant must vanish in the first place (see
[15, 16]); the Nijenhuis condition then makes the two Poisson structures compatible. Now
vanishing of the Magri–Moroso concomitant is equivalent to the 2-form ω1 on the right-hand
side of (14) being closed (see, e.g., [8]), and that is automatically satisfied in our present
set-up. Another equivalent characterization of this condition was derived in [8] and it implies
that, in particular, we will have

iL�RωL = −2ddREL. (43)

This brings us to the subject of bi-differential calculus. Whenever NR = 0, the derivations d

and dR constitute a bi-differential calculus and this is a useful tool for generating functions (not
even first integrals, necessarily) which are in involution, i.e. have vanishing Poisson brackets,
with respect to both Poisson structures. The algorithmic process by which such functions are
generated (at least locally) requires an initial function f which satisfies ddRf = 0. Obviously,
when R is invariant, we have such an initial function since (43) shows that ddREL = 0, and
the hierarchy of functions in involution will be first integrals.
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As we indicated before, we have also other classes of R-tensors in mind for future studies,
so it is certainly worthwhile to investigate the vanishing torsion condition in its own right; this
will be the subject of the next section.

5. The Nijenhuis torsion of J̃ and R

We shall approach the computation of the conditions for vanishing Nijenhuis torsion of R in
quite a general way.

Let ω be a symplectic 2-form on an even dimensional manifold, and ω1 any 2-form;
define the (1, 1)-tensor R as before by iR(ξ)ω = iξω1. We shall derive an expression for
the Nijenhuis torsion of R in terms of ω and R, under the assumption that ω1 is closed. The
exterior derivative dω1 can also be expressed in terms of ω and R; the two expressions have an
unexpected affinity. Finally, it will be shown that the condition for the vanishing of the
Nijenhuis torsion of R, when ω1 is closed, can be written dRω1 = 0.

In order to derive the last result we shall need to employ Frölicher–Nijenhuis calculus,
and we start by listing some relevant generalities concerning that calculus [11].

It follows from the definition of R that ω(Rξ, η) = ω(ξ, Rη), and therefore that
iRω = 2ω1. Observe, however, that this relation cannot be used to define R directly, because
one needs to know that R is symmetric with respect to ω before the left-hand side fixes R in
view of the non-degeneracy of ω. But it easily further follows now that

iRiRω = 2iR2ω = 2iRω1.

Assume next that dω1 = 0 (as well as dω = 0). Then obviously diRω = 0, from which it
follows that also dRω = iRdω − diRω = 0, and that dR2ω = −diR2ω = −diRω1 = dRω1.

In the Frölicher–Nijenhuis classification of i∗ and d∗ derivations, the commutator of two
d∗ derivations defines the Nijenhuis bracket of arbitrary vector-valued forms L and M as
follows:

[dL, dM ] = d[L,M],

and the relation with the Nijenhuis torsion of a type (1, 1) tensor field R is that

[R,R] = 2NR.

Finally, the general commutator relation for [iL, dM ], when applied to the special case that L
and M both equal a (1, 1)-tensor R, yields

[iR, dR] := iRdR − dRiR = −i[R,R] + dR2 .

It then follows from what precedes that

2dRω1 = dRiRω = 2iNR
ω − dR2ω,

or finally

2iNR
ω = 3dRω1. (44)

It is clear that NR = 0 will imply dRω1 = 0, but the fact that these conditions are actually
equivalent needs a stronger result, because

iNR
ω(ξ, η, ζ ) =

∑
ξ,η,ζ

ω(NR(ξ, η), ζ ),

Thus (44) does not determine NR , unless we know, what we will show now, that the three
terms in the cyclic sum on the right are actually equal.
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Proposition 8. If R is defined by iR(ξ)ω = iξω1, where ω is a symplectic 2-form and ω1 any
2-form, then

dω1(ξ, η, ζ ) =
∑
ξ,η,ζ

ζ(ω(Rξ, η)) −
∑
ξ,η,ζ

ω(R([ξ, η]), ζ ). (45)

If in addition dω1 = 0 then

ω(NR(ξ, η), ζ ) = −
∑
ξ,η,ζ

ζ(ω(Rξ,Rη)) +
∑
ξ,η,ζ

ω(R([ξ, η]), Rζ ). (46)

It follows that when dω1 = 0,NR = 0 if and only if dRω1 = 0.

Proof. The first result follows simply from the identity dω1(ξ, η, ζ ) = ∑
ξ(ω1(η, ζ )) −∑

ω1([ξ, η], ζ ) and the defining relation for R. To obtain the second result one uses the
identity dω(ξ, η, ζ ) = ∑

ξ(ω(η, ζ )) − ∑
ω([ξ, η], ζ ) to express in particular the fact that

dω(ξ, Rη,Rζ) = 0. There are two terms on the right-hand side involving derivatives by
R(·). Their arguments may be expressed in terms of ω1, and the closure of ω1 used to replace
each of these terms by five others, none of which involves a derivative by R(·). When the
resulting expression is simplified, (46) follows. In particular, (46) implies that the left-hand
side ω(NR(ξ, η), ζ ) is invariant for cyclic permutations. The final statement now immediately
follows from (44). �

The similarity between the expression for dω1(ξ, η, ζ ) and the expression for
ω(NR(ξ, η), ζ ) when dω1 = 0 is evident.

We now obtain explicit expressions for the conditions for the vanishing of the Nijenhuis
torsions of J̃ and R, starting with the former.

Now J̃ is determined by a given J along π and the canonical 1-form θ only, i.e. it does
not depend on a given dynamics of Lagrangian or Hamiltonian type. For this reason, there is
no advantage to be gained from working in any local frame other than a natural coordinate
frame. It is clear from expression (37), or in fact from a direct interpretation of definition (35),
that in natural bundle coordinates J̃ will be of the form

J̃ = Ki
j

(
∂

∂qi
⊗ dqj +

∂

∂pj

⊗ dpi

)
+ Mkj

∂

∂pj

⊗ dqk, (47)

where

Ki
j = ∂

∂pi

(
J s

j ps

)
, Mkj = ∂

∂qk

(
J s

j ps

) − ∂

∂qj

(
J s

k ps

)
. (48)

The following immediate properties of the coefficients of J̃ will be used below:

∂Kl
k

∂pj

= ∂K
j

k

∂pl

,
∂Mjk

∂pl

= ∂Kl
k

∂qj
− ∂Kl

j

∂qk
,

∑
i,j,k

∂Mjk

∂qi
= 0, (49)

where
∑

i,j,k again refers to a cyclic sum over the indicated indices. In fact, these properties
merely express the fact that the 2-form d(J θ) in the defining relation of J̃ is closed; that is,
they are the coordinate expressions of the first result of the proposition above in this case. They
are also directly related to the three properties of proposition 2 via the Legendre transform.

Theorem 2. The Nijenhuis tensor of J̃ vanishes if and only if

A
ij

k := Ki
l

∂K
j

k

∂pl

− K
j

l

∂Ki
k

∂pl

= 0, (50)
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Bi
kj := Kl

k

∂Ki
j

∂ql
− Kl

j

∂Ki
k

∂ql
+ Mkl

∂Ki
j

∂pl

− Mjl

∂Ki
k

∂pl

+ Ki
l

∂Mjk

∂pl

= 0, (51)

∑
i,j,k

Cijk :=
∑
i,j,k

(
Kl

i

∂Mjk

∂ql
+ Mil

∂Mjk

∂pl

)
= 0. (52)

Proof. This can be obtained from proposition 8; alternatively, it can be established by a
simple coordinate calculation in which attention must be paid to making appropriate use of
the properties (49) for recombining the various coefficients in the right format. One obtains

NJ̃

(
∂

∂pi

,
∂

∂pj

)
= A

ij

k

∂

∂pk

,

NJ̃

(
∂

∂pi

,
∂

∂qj

)
= Aik

j

∂

∂qk
+ Bi

kj

∂

∂pk

,

NJ̃

(
∂

∂qi
,

∂

∂qj

)
= Bk

ij

∂

∂qk
+

∑
i,j,k

Cijk

∂

∂pk

,

which implies the stated result. �

We now come back to the situation on the tangent bundle, where we have the tools to
approach the question in an intrinsic way. So, take ω now to be the closed 2-form ωL = gK on
TQ and ω1 = d(J θL). In principle one should evaluate NR on all combinations of horizontal
and vertical lifts and identify each time the horizontal and vertical component of the result; but
the cyclic sum invariance of ω(NR(ξ, η), ζ ) means that, for example, ω(NR(XH , Y V ), ZV )

will follow from ω(NR(Y V , ZV ),XH ); furthermore, it is easy to see from the expression in
proposition 8 that ω(NR(XV , Y V ), ZV ) = 0. Thus in the end only three components need to
be computed, which is in agreement with the coordinate results in theorem 2.

Theorem 3. Let R be defined by iR(ξ)ωL = iξ d(J θL) and thus be characterized as in
proposition 1. Then, the necessary and sufficient conditions for NR to vanish are

DV

KX
K(Y ) − K

(
DV

XK(Y )
) = 0, or equivalently N V

K
= 0, (53)

NH
K (X, Y ) + DV

UXK(Y ) − DV
UY K(X) = 0, (54)∑

X,Y,Z

(g(dHK(UY,Z),X) + g(dHK(Y,UZ),X) + g(dHK(Y,Z),UX))

−
∑

X,Y,Z

(
g
(
DV

Y U(UZ),X
) − g

(
DV

ZU(UY),X
)

+ g(dHU(Y,Z),KX)
)

=
∑

X,Y,Z

g(R(Y, Z),K2X). (55)

Proof. In agreement with what was said above, we need to compute only, for example,

ωL(NR(XV , Y V ), ZH ), ωL(NR(XH , Y V ), ZH ), ωL(NR(XH , YH ), ZH ).

Considering relation (46) with ξ = XV , η = YV , ζ = ZH , making use of the defining relations
(17), (18) of R and (10), the first sum on the right readily reduces to −DV

X(g(Y,K2Z)) +
DV

Y (g(X,K2Z)). In evaluating such expressions, there is no need to take account of terms
which involve derivatives of vector field arguments: we know that these will always cancel
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out in the end since we are computing a tensorial quantity. Terms involving derivatives of g

cancel out in view of one of the Helmholtz properties (11), there remains

g
(
X, DV

Y K2(Z)
) − g

(
Y, DV

XK2(Z)
) = 0.

One can easily eliminate g from this expression by making appropriate use of (23) after
expanding the derivatives of K2; what follows is the first of conditions (53). To see that this
is actually equivalent to

N V

K
(X, Y ) := DV

KX
K(Y ) − (

KDV
XK

)
(Y ) − DV

KY
K(X) +

(
KDV

Y K
)
(X) = 0,

one has to lower an index by g again, use (23) to arrive at an expression like g
(
Z, DV

KX
K(Y )

)−
g
(
X, DV

KZ
K(Y )

)
, then take the derivatives outside g to enable switching from K to K , and

continue making use of the vertical Helmholtz condition and property (23) until all terms are
expressed in terms of K . We leave the details to the reader.

The computation of ωL(NR(XH , Y V ), ZH ) runs in a very similar way. Elimination of
derivatives of g requires making use of the horizontal Helmholtz condition (12) this time and
of property (24). Condition (54) then quite easily follows.

Consider finally ωL(NR(XH , YH ), ZH ). The first cyclic sum in (46) becomes∑
X,Y,Z

DH
X (g(UZ,KY) − g(UY,KZ)).

The terms involving derivatives of g can be written in the form∑
X,Y,Z

(
DH

Z g(UY,KX) − DH
X g(UY,KZ)

) =
∑

X,Y,Z

(
DH

UY g(Z,KX) − DH
UY g(X,KZ)

)
,

in view of the Helmholtz property, after which they can be replaced by algebraic terms through
(24) (or better its consequence (27)). It is then easy to see that, together with the remaining
terms of the first cyclic sum, they make up the first two lines in the expression for (55). The
right-hand side in this expression directly comes from what remains to be considered in the
second cyclic sum of (46). �

Equations (53) and (54) have the following meaning in terms of components with respect
to the basis {Hi, Vi}:
K

s

t Vs

(
K

j

k

) − Kj
s Vt

(
Ks

k

) = 0, (56)

Kl
kHl

(
Ki

j

) − Kl
jHl

(
Ki

k

)
+ Ki

l

(
Hj

(
Kl

k

) − Hk

(
Kl

j

))
+ Ul

kVl

(
Ki

j

) − Ul
jVl

(
Ki

k

) = 0. (57)

A corresponding version of the third condition, derived directly from equation (55) with the
aid of (27), can be written as∑

i,j,k

(
Hk

(
Ul

i Klj − Ul
jKli

) − Rl
ijKlmKm

k

) = 0. (58)

Finally we remark that one can manipulate (55) further to eliminate g from it as well (i.e. to
raise an index, so to speak). One will need property (25) in this process; but this is a quite
tedious exercise and results in an expression which is not very transparent.

6. Application: the Finsler case

We are now in a position to generalize the interesting results of [8] and [22] from the pseudo-
Riemannian to the Finsler case. So, without changing notations, it will from now on be
understood that the tangent bundle TQ has its zero section removed. For our present purposes,
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there is no need to enter into much detail of Finsler geometry; it will be sufficient that we
assume that the given non-degenerate Lagrangian is homogeneous of degree two in the fibre
coordinates. Since this implies that the Lagrangian is equal to its corresponding energy
function (and therefore is a first integral), we shall call it E. The corresponding generalized
metric g = DV DV E is homogeneous of degree zero and the second order vector field �

is a spray. In such a context, the natural thing to do is to assume then that J , the type
(1, 1) tensor field along τ we start from, also is homogeneous of degree zero. Indeed, we
then immediately recover the Riemannian situation when ‘homogeneous of degree zero’ is
specialized to ‘independent of the velocities’.

As said in the introduction, the operator which characterizes the homogeneity of tensor
fields along τ is DV

T . For a good overview and later use, let us list a number of interesting
relations and properties which (not always exclusively) apply in the Finsler case.

Lemma 2. When the Lagrangian E is homogeneous of degree 2, we have (X and Y being
arbitrary vector fields along τ )

∇T = 0, DV
XT = X, DH

X T = 0, (59)

∇g = 0, DV
T g = 0, DV

Xg(T, Y ) = 0, DH
X g(T, Y ) = 0, (60)

�(E) = dHE = 0, θE = T g, ∇θE = 0,

DV
XθE = X g, DH

X θE = 0.
(61)

Proof. Concerning equations (59), ∇T = 0 is the homogeneity property which indicates that
we have a spray. The second equality in (59) is always true and the third then follows from
the commutator

[∇, DV
X

] = DV
∇X − DH

X . For (60), ∇g = 0 is one of the general Helmholtz
properties (11), the second expresses that g is homogeneous of degree zero, and the other
two then are a direct consequence of (11, 12). Finally, �(E) = ∇E = 0, since E is a
first integral; DH

X E = 0 or equivalently dHE = 0 then follows from the same commutator
relation; g(X, T) = DV

XDV
T E − DV

DV
XT

E = 2DV
XE − DV

XE = θE(X), i.e. θE = T g, from
which the remaining three equations immediately follow by taking the appropriate derivative
(DV

XθE = X g in fact always holds). �

Note in passing that ∇T = 0 implies that ∇ ≡ DH
T and that � = iTR.

The next thing to analyse is the effect of assuming that the J we start from is homogeneous
of degree zero, i.e. DV

T J = 0.

Proposition 9. If g and J are homogeneous of degree 0, then K is homogeneous of degree 0
and U is homogeneous of degree 1. Moreover, we have KθE = JθE and the defining relation
of U simplifies to

g(UX, Y ) = g(T, dHJ (X, Y )) = g(T, dHK(X, Y )). (62)

Proof. The homogeneity properties of K and U follow from acting with DV
T their

defining relation. Taking Y = T in the defining relation of K, we immediately have that
g(KX, T) = g(JX, T) or KθE = JθE . Finally, the simplification in the defining relation for U
immediately follows from the fact that DH

X θE = 0, so that dH(J θE)(X, Y ) = θE(dHJ (X, Y )).
�

We now come back to the two aspects of recursion under study and investigate what the
homogeneity properties of the Finsler case can do to simplify the conditions for vanishing
L�R or NR .
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Theorem 4. Assume that g and J are homogeneous of degree 0. Then, if K is symmetric and
∇K = 0, we have automatically that U = 0 and �K = K�. In other words, the necessary
and sufficient conditions for having L�R = 0 (see theorem 1) reduce to K = K and ∇K = 0.

Proof. We know from proposition 2 and the homogeneity that K = K implies dV(J θE) =
dV(KθE) = 0. Since [∇, dV] = −dH, it then follows from the assumption ∇K = 0 and the
property ∇θE = 0 that also dH(KθE) = dH(J θE) = 0, whence U = 0.

Showing that � will commute with K can be done by a kind of integrability analysis,
similar to the procedure which was followed for the Riemannian case in appendix A of [22].
A much simpler proof, however, goes as follows. Property (33), which roughly expresses that
K comes from a J , plus (34), ensure for a symmetric K that Kij is a Hessian of some function,
and we can actually determine such a function in the Finsler case. Indeed, from the symmetry
of K and the homogeneity, we have that

∂
(
J l

jplu
j
)

∂uk
= J l

kpl + uj
∂J l

jpl

∂uk
= J l

kpl + uj ∂J l
kpl

∂uj
= 2J l

kpl,

so that Kij is the Hessian of the function

k := 1
2J l

jplu
j = 1

2Kl
jplu

j or in intrinsic terms k = 1
2 (KθE)(T). (63)

It follows from ∇T = 0,∇θE = 0 and ∇K = 0 that k is a first integral. Moreover, the above
computation expresses that dVk = KθE and thus

0 = ∇dVk = dV∇k − dHk = −dHk.

But in the case of a spray, as was already shown by Klein [14], dHk = 0 is a necessary and
sufficient for k to be a Lagrangian for the system. Hence its Hessian K will commute with �.

�

The conditions for vanishing Nijenhuis torsion also simplify in the Finsler case.

Theorem 5. If g and J are homogeneous of degree 0, we have NR = 0 if and only if the
coefficients A

ij

k and Bi
kj (see (50) and (51)) vanish, or equivalently (53) and (54) hold true.

Proof. We go back to the equivalent calculation of NJ̃ on T ∗Q, knowing that by homogeneity:
J l

jpl = Kl
jpl and pi∂Ki

j

/
∂pk = 0. Multiplying condition (51) by pi , we thus get

Kl
k

∂
(
Ki

jpi

)
∂ql

− Kl
j

∂
(
Ki

kpi

)
∂ql

+ Ki
l pi

∂Mjk

∂pl

= 0.

Taking a further derivative with respect to qm, followed by a cyclic sum over the free indices,
it follows that the third condition in theorem 2, in the Finsler case, is automatically satisfied
in view of the second. �

7. Illustrative examples and conclusions

We have introduced a class of type (1, 1) tensor fields R on a tangent bundle TQ which
are constructed out of a given Lagrangian system and a (1, 1) tensor J along the projection
τ : TQ → Q. One of the interesting points is that such R-tensors arise from the pullback under
the Legendre transform of the complete lift J̃ of a tensor along the cotangent bundle projection
π : T ∗Q → Q. Our main achievement is that we have unravelled in a precise way the different
requirements which have to be met for R to be invariant under the given dynamics, or to have
vanishing Nijenhuis torsion, or to have both properties. By way of direct application, we have
seen how such conditions reduce or simplify in the particular case of Lagrangian equations,
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coming from the energy function of a Finsler metric. This is a generalization of the more
common kinetic energy Lagrangians associated with a Riemannian or pseudo-Riemannian
metric. But we would like to emphasize here that our present general results are also relevant
for the Riemannian situation. Indeed, it is quite common to look in the Riemannian case only
at recursion tensors which are natural lifts of tensors on the base manifold, and the point is that
this is often too restrictive: that is, even in that situation, there can be features which require
the introduction of tensors whose components depend nonlinearly on the fibre coordinates of
TQ or T ∗Q.

In order to illustrate the practical applicability of the various conditions we identified, we
choose to show how one can make constructive use of them in constructing recursion-type
tensors related to some simple dynamics. Naturally, the simple classical system par excellence
for testing new developments is the harmonic oscillator. So consider first the Lagrangian

L = 1
2

(
u2

1 + u2
2

) − 1
2

(
q2

1 + q2
2

)
.

The metric is the Euclidian one and � = −1, so that any choice for K will commute with
it. Most of the relevant conditions we have met are conditions on K rather than on J , but it
is property (34) which will ensure that K comes from some J . We wish to construct some
invariant R-tensors here which will give rise to alternative Lagrangians.

Let us first make K symmetric by choosing simply K12 = 0. Then (34) further requires
that K11 is independent of u2 and K22 independent of u1, and imposing ∇K = 0 requires that
they must be first integrals. We can take, for example,

K11 = u2
1 + q2

1 , K22 = u2
2 + q2

2 .

According to proposition 5, KH will be an invariant tensor and will give rise to an alternative
Lagrangian, which is easily found to be

L′ = 1
12

(
u4

1 + u4
2

)
+ 1

2

(
q2

1u2
1 + q2

2u2
2

) − 1
4

(
q4

1 + q4
2

)
.

This is perhaps nothing very surprising, but observe that even for such a quite trivial example,
we need a theory in which the tensor J and K are tensor fields along τ . A tensor J which gives
rise to the above K in the sense of (33) is given by, for example, J i

i = (
q2

i + 1
3u2

i

)
(J i

j = 0
for i �= j ), and the corresponding U as defined by (16) is easily seen to be zero. Moreover,
NV

K = 0, so that KH has vanishing Nijenhuis torsion as well.
Another symmetric K, which has all the properties of the preceding one, is given by

K11 = K22 = u1u2 + q1q2, K12 = K21 = 1
2

(
u2

1 + u2
2 + q2

1 + q2
2

)
.

So again, R = KH satisfies L�R = 0 and NR = 0, and the corresponding Lagrangian is
found to be

L′ = 1
2u1u2

(
1
3

(
u2

1 + u2
2

)
+ q2

1 + q2
2

)
+ 1

2q1q2
(
u2

1 + u2
2 − q2

1 − q2
2

)
.

For a different example, we start from the Lagrangian L = 1
2

(
q2

1u2
1 + u2

2

)
, which means

that

� = u1
∂

∂q1
+ u2

∂

∂q2
− u2

1

q1

∂

∂u1
.

The only nonzero connection coefficient is �1
1 = u1/q1 (and � = 0 so that no restrictions can

come from the commutation requirement in some of the propositions).
Suppose that this time our priority is to construct a tensor R with vanishing torsion. Then,

it may be advantageous to work with the conditions of theorem 2 on the cotangent bundle
(which can be regarded also as conditions on TQ, but expressed in the variables (q, p)), but
we will further assume from the outset that K is symmetric. Recall the rather remarkable fact
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that for symmetric K,N V
K = 0 (which is the same as A

ij

k = 0 in the variables (q, p) and
involves two requirements in dimension 2) is actually equivalent to the, in principle, stronger
condition NV

K = 0 (which consists of six requirements in dimension 2). From the symmetry
of K, it follows that we must have K2

1 = q2
1K1

2 . Then (32), which expresses that K comes
from some J , implies the existence of some function F such that

J s
1 ps = ∂F

∂p1
and q2

1J s
2 ps = ∂F

∂p2
,

and it follows that we will have

K1
1 = ∂2F

∂p2
1

, K1
2 = q−2

1

∂2F

∂p1∂p2
, K2

1 = ∂2F

∂p1∂p2
, K2

2 = q−2
1

∂2F

∂p2
2

.

Using this information it is easy to see that the two independent conditions A12
1 = A12

2 = 0
express that the ratio

(
K1

1 − K2
2

)/
K2

1 must be independent of the pi , provided K2
1 is not zero.

The case K2
1 = 0 is not very interesting and will be omitted. For K2

1 �= 0, from the condition
N V

K = 0 we can put

K1
2 = q−2

1 K2
1 , K2

2 = K1
1 − f (q)K2

1 ,

where the last relation is actually a second-order partial differential equation for F. Imposing
∇K = 0 it immediately follows that f (q) must be q−1

1 , that K1
1 must be a first integral, F1

say, and that K2
1 = q1F2, where F2 also is an as yet undetermined first integral. In an attempt

to circumvent the difficult issue of solving the equation for F, observe that K2
1 = q1F2 implies

that ∂F/∂p2 = q1
∫

F2dp1, wherein we omit additive functions depending on only one of the
pi because these will lead to terms in the solution which can be generated in the case K2

1 = 0.
If we use this in the expression for K2

2 in terms of F, introduce the auxiliary function

ξ =
∫

∂F2

∂p2
dp1,

and now re-express that K2
2 must be a first integral; it follows that ξ must solve the linear

first-order equation

q1p1
∂ξ

∂q1
+ q3

1p2
∂ξ

∂q2
+ p2

1
∂ξ

∂p1
= p1ξ.

Using the method of characteristics, the general solution of this equation is found to be

ξ = p1η(x1, x2, x3), with x1 = p1/q1, x2 = p2, x3 = q2 − 1
2 (p2/p1)q

3
1 ,

where η is an arbitrary function of the indicated arguments and these xi all are first integrals.
It follows that K2

2 = q−1
1 ξ = x1η. Since F2 must itself be a first integral (and is not allowed to

depend on time) it must actually be a function of the xi as well, and the definition of ξ implies
that

∂F2

∂p2
= ∂ξ

∂p1
= η + x1ηx1 +

1

2
(x2/x1)ηx3q

2
1 .

Acting with � on both sides, and intertwining � with ∂/∂p2 on the left-hand side, it follows
that (F2)x3 = −x2ηx3 , and thus F2 = −x2η + ζ(x1, x2) for some arbitrary ζ . Returning with
this information to the preceding equation, we get the restriction

ζx2 = 2η + x1ηx1 + x2ηx2 .

Taking a derivative with respect to x3, we get a first-order partial differential equation for ηx3

which is easy to solve; after integration with respect to x3 one learns that η must be of the form

η = x−2
2 φ

(
x2x

−1
1 , x3

)
,
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for some as yet arbitrary φ. In fact there is an extra freedom for adding a function of x1 and x2,
but that can be absorbed into ζ . Moreover, the preceding equation now implies that ζ cannot
depend on x2 and so we omit it (as an additive function of only one of the pi). We have now
come to a stage where we know that F2 = −x2η and

K2
2 = x1η, K2

1 = q1F2, K1
2 = q−1

1 F2, K1
1 = (x1 − x2)η,

with η as described above. To find further specifications about η we re-impose now that K
must satisfy

∂K1
2

∂p2
= ∂K2

2

∂p1
,

∂K1
1

∂p2
= ∂K2

1

∂p1
.

The first condition appears to be satisfied automatically, but the second gives an equation for
φ, with coefficients which can be expressed in terms of x1 and x2, except for a factor q2

1 in
the coefficient of φx3 . It then follows, for example from acting with � on the equation, that φ

cannot depend on x3, in other words must be a function of x := x2/x1 only, and the condition
reduces to

(x − x2 − x3)φ′ = (2 − x)φ.

The solution of this equation is φ(x) = x2(x2 + x − 1)−1. We thus have found the following
type (1, 1) tensor

K1
1 = (x1 − x2)y

−1, K2
2 = x1y

−1, K1
2 = −q−1

1 x2y
−1, K2

1 = −q1x2y
−1,

where we have put y = x2
2 +x1x2 −x2

1 for shorthand; rather surprisingly, K is homogeneous of
degree −1 in the pi . This K by construction satisfies all requirements for having that R = KH

is �-invariant and has vanishing Nijenhuis torsion again. It is the Hessian of a Lagrangian
which will be homogeneous of degree 1 and non-degenerate, but we do not have an explicit
expression for this Lagrangian. Observe finally that one can easily check that also dVK = 0.
This means that we are actually in the situation of proposition 7, so that the system is separable.
This is not so surprising, of course, since the given system is given as decoupled equations.
But in fact, the conclusion we reach here is not so trivial: it means that the given system will
also separate in entirely different coordinates, namely coordinates in which K diagonalizes
and which are guaranteed to exist by the theory in [20]. But we will not pursue this issue
further.

To conclude now, there are a number of interesting applications in which type (1, 1)

tensor fields can play a distinctive role. In the present paper, we have focused on the question
of invariance of such tensors under a given Lagrangian flow, for its obvious applications to
recursion procedures for symmetries, or the generation of first integrals, and even for less
obvious applications such as the question of decoupling of second-order equations, as briefly
documented in section 4. Of course, whenever type (1, 1) tensors are part of a theory, one is
bound to study the effect of vanishing Nijenhuis torsion. Not unexpectedly, as we have seen in
section 5, this is a rather more complicated issue than in the case of J living on Q, but still there
are interesting simplifications occurring in the number of conditions. This is even more so in
the Finslerian case, which we have explored as a particular case of the general theory, but at
the same time for a direct generalization of the results we discussed for (pseudo-)Riemannian
spaces in [22].

We plan to study another subclass of such R-tensors in a forthcoming contribution, with
the purpose of generalizing, again from basic tensor fields to tensor fields along the projection,
the constructions which led to a gauged bi-differential calculus in [8] and were related, for
example, to the study of projective equivalence in [5]. The results we obtained here about
Nijenhuis torsion will of course be directly applicable also to this entirely different problem.
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